If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-8t-30=0
a = 16; b = -8; c = -30;
Δ = b2-4ac
Δ = -82-4·16·(-30)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{31}}{2*16}=\frac{8-8\sqrt{31}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{31}}{2*16}=\frac{8+8\sqrt{31}}{32} $
| k+1.5=4+0.5 | | 2x+6=1×-13 | | 3p-2(3-p)=4 | | -w=4(w+3)=-12 | | 4^(2x-1)-7=20 | | 4-2(q-3)=-11 | | w-9/2=-3 | | 3^2x-1-7=20 | | 2(r+4)-4r=-2 | | 2x-4(x-3)=-7+5x-37 | | 6m+8+4m-2=20+8m | | 3x/180=1 | | 32-(2x+4)=2(x+4)+x | | 9k^2=25 | | (16+2x)(12+2x)=185 | | v=36-5v | | 9k2=25 | | 1/5x+5=19+1/2x | | 2/3x+6=1/3×-132 | | 4^2(x+5)-11=245 | | 7h-5÷4=11 | | 2/3x+6=1/3×-13 | | 49+6y=13y | | 11x/300=1 | | 1=50/x+60/x | | 814=22(v-923) | | 18x+66=105 | | (3x+2)=(x+314) | | 23x+66=105 | | 3x4-7x2=0 | | 21(y-946)=168 | | 4^8x-2=5^x |